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Abstract. A new approach has been used to show what kind of potentials we can use to 
obtain a series of exact solutions in closed forms of the Schrodinger equation for bound 
states. In particular, the well known Coulombic and oscillator solutions and others are 
reproduced as special cases. 

1. Introduction 

The standard quantum mechanical applications of the radial Schrodinger equation 
were extended to various branches of physics recently (for example, quark physics (cf 
Quigg and Rosner 1979), laser theory (Haken 1970), field theory in zero dimensions 
(Kaushal 1974) and nuclear physics (Lai 1983). It is well known that the radial 
Schrodinger equation must be solved numerically in general, and the complete and 
non-numerical solution exists in a closed form only for a few forces (Newton 1965). 
One of the most interesting topics is to search for new methods which can be used to 
find the exact solutions in closed forms of the Schrodinger equation for more new 
potentials. Recently, some exact solutions in closed forms have been given for V( r )  = 
V0-2(N+4)VA’2r+ V6r6 (Yang 1979), V(r)= r2+Ar2(1 +gr2)-’ (Flessas 1981, Lai and 
Lin 1982, Whitehead er al 1982, Znojil 1983), and V(r) = -r-’*2Ar+2A2r2 (Saxena 
and Varma 1982). (We notice that V(r) = -r-’*2Ar+2A2r2 is just the form shown 
in (28) of the paper by Yang (1979).) 

The aim of the present paper is to improve on the new method introduced by Yang 
(1979). 

2. The method 

Let us study the radial Schrodinger equation for an attractive radial potential V(r): 

where the units 2m = h = 1 are used. If we introduce the function U( r )  = rR( r )  and a 
certain new variable (( r ) ,  we find from (1) 

u ” + A u ’ + ~ ’ - ~ ( E - F ) u = O  (2) 
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where U' = du/d(, A = f't'-2, 5'= d,$/dr and 

+ V ( r ) .  F=- I ( l +  1) 
r2 

With an ansatz 

U = HeFG 

we may write equation ( 2 )  in the form 

(3) 

(4) 

HI'- 2( GI- f A ) H ' + [ ( E  - F ) t ' - 2 +  G'( GI- A )  - G"]H = 0 ( 5 )  

where primes on both H and G denote differentiation with respect to 5. It may be 
emphasised here that both T ( r )  and G also need to be determined. We shall search 
for all the bound states to ( 5 )  which have the elementary forms 

2.1. The simplest mode 

As shown in ( 5 ) ,  one simple mode that yields the simplest recursion relation between 
coefficients of successive terms of the series ( 6 )  is seen to be 

where the constants B-2, B,, D-,, D, and m all need to be determined. From (7a )  
we obtain 

and 

As shown in (8'), we may let B-, = 0 in ( 7 a )  since the contribution of B-, may be 
merged into s, and we shall confine ourselves to the cases with 

B,/ ( m + 2)  > 0 

Substitution of ( 7 )  into ( 5 )  yields the recursion relation 

[( v + s)( v + s - 1) - D-,]a,  - {2[ v + s - ( m  + 2) ]B ,  - Dm}av-(m+2) = 0. 

It then follows that 

s(s - 1) = D-2 

s = f * ( f + m 2 ) 1 ' 2  

or 
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and 

U" 

a u l a v - ( m + 2 1 -  2BmIv (11) 

where '*' in (10') should be chosen correctly according to the boundary condition that 
R be finite at 5 = 0. From ( 1  1) we see that if the series (6) does not terminate, then 
there will be 

and therefore the solution cannot be normalised under the condition (8"). As shown 
in ( 9 ) ,  the series H ( 5 )  will terminate and reduce to a polynomial: 

where w = m +2. It is worth noting that the requirements (12) and (13) will not be 
necessary for some special cases in which 15) + CO never happened, but even for those 
cases the eigensolutions derived hereafter should be correct, though they may be 
incomplete as shown by number 2-2 and 2-5 in table 2, for example. Substitution of 
( 7 a )  and (13) into ( 7 b )  give 

F = E +5'2{-$(2A'+A2)+BBZ,52(m+1)- [ (2n+ l ) w + 2 s - 1 ] ~ , 5 " + ~ _ , 5 - ~ ) .  (14) 
This result shows what kind of potentials can be solved exactly with the approach just 
described. 

As an example, if we let 

5 'gm+l=  constant x a (15) 
(which is shown in table 1 as number 1-1) then (15) yields 

[ ( I )  = [( m + 2)a( r + b)]1'(m+2) (16) 
and 

(16') 
d 

A =-In ['= - ( m  + I)&-'  
d5  

where b is an arbitrary constant. Substitution of (15)-(16') into (14) gives 

which means that for a known concrete potential of the form 

F = Fo + F- ( r + b ) -' + F-*( r + b ) - 2  
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the respective eigensolutions can be obtained easily by the new approach just described 
above. The comparison between (17)  and (18) gives 

E = Fa- B k a 2  (19a) 

Bma = -F-, 2n + 1 +- ( m + 2  

0 - 2 - $ ( m  + l ) (m + 3 )  = ( m  +2)2F-2. 

From (19c) and (10) we obtain 

s = 4 i. ( m  + 2)($+ F-2)1'2. 

From the substitution of (20) into (196) and then (19b) into (19a) ,  we obtain eigenvalues 

En = FO- fF! , [n+f* (~+ F-2)1/2]-2 n =0 ,  1 , 2 , .  . . . (21) 

Since the respective H,,([) can be found from (7)  trivially, it will be omitted here. As 
is shown in this example, because the values of m + 2 and a are not determined uniquely 
by the comparison, we may choose m + 2 = 1 and a = 1 for convenience. It is apparent 
to us that the well known Coulombic solution is reproduced if 

F o = O  b=O F-,=1(1+1) F-, = Ze2. 

Two other examples belonging to mode (7) are also shown as number 1-2 and 1-3 
in table 1.  They may be analysed in the same way as number 1-1 .  Apparently, the 
well known oscillator solution and the known eigensolutions for 1 = 0 for the Morse 
potential (cf Flugge 1974, p 186) are reproduced as number 1-2 and 1-3, respectively, 
when suitable parameters are taken. It usually appears that for many potentials with 
respect to other types of t ( r )  other than those listed in table 1 only one single 
eigensolution can be provided by this new approach belonging to mode (7). 

2.2. The other simple mode 

Another mode which can yield a simple recursion relation is 

G'-fA = (B-25-' + Bmtm+') (  1 + Km[m+2)-1  

( E  - F)['-2+ G'(G'-A)  - G ' ' Z ( - D _ ~ ~ - ~ +  D,tm)(l  + Km,$'"2)-1 

where the parameter K ,  # 0. From (22a) we obtain 

e - G  = 5 ! - 1 / 2 5 - E , ( 1  + K t m + 2 ) ( R , - b m ) / ( m + 2 )  
m 

and therefore 

c a ? l w t T W  (23) = [ r - 1 / 2 6 s - R 2 ( 1  + K y + 2 ) ( B - 2 - b m ) / ( m + 2 )  
m 

?la0 

where b, = B m / K m .  We shall confine ourselves to searching for only all the bound 
states with the elementary form 

As shown in (23), we may let B-,=O in (22) since the contribution of B-, can be 



2536 Y a n g  Chu-liang 

merged into s and 6,. Substitution of (22)  into ( 5 )  gives 

[( v + s)( v + s - 1) - D-,]u, + [ ( v + s - w ) (  v + s - 1 - W )  K ,  

-2(  Y + S  - w ) B ,  + D , ] U , - ~  = 0. 

The series ( 6 )  reduces to the polynomial (23') only if 

D, = 2( nw + s ) B ,  - (nw + s ) ( ~ w  + s - 1)K, 

where s can be found from ( 4 )  too, i.e. 

s = ti. ($+ D-2)l'2. 

Substitution of ( 2 2 a )  into (22b) gives 
2 2 ( m + 2 )  

F = E + ( $)2( -$(2A'+ A2)t2+ 6, (bm + w )  K m t  

(1 + Kmtm+2)2  

D-2-[dm + ( ~ - l ) b , ] K , ~ " " ~  + 
1 + Kmtmc2 

which may be rewritten in the form 

F = E + (f)'( -$(2A'+ A2)t2 + b,( b, + 1 )  - d, + bm(bm+w) 
( 1  + Kmtm+2)2 

D-,+d,-bm(2b,+w+1) + 
1 + 

where d ,  = D,/ K,. The respective eigensolutions with respect to (26) derived by the 
new method have been shown in table 2 as number 2-1. Some other examples belonging 
to mode (22) are listed in table 2 as well. 

2.3. The slightly more complex mode 

Another mode which yields a slightly more complex recursion relation seems to have 
the form 

(27a)  

(27b) 

(28a)  

(28b) 

G ' -$A=B ml 6 w - l  d m 2 t 2 W - 1  

( E  - F)t ' -*+ G' (G' -A)-  G"= -D-25-2+ D,Itw-2+ Dm2t2w-2 

or 

G' - fA  = B-,t-' + BmSw-' 

( E  - F ) t ' - 2  + G'( G' - A )  - G" 

= ( -D-2 t -2+  D,,tw-2+ D,,t'"-')( 1 + K,t")-' 

etc. As an example, ( 2 8 )  yields 

[( v +  s)( v +  s - 1) -2(  v +  s )B-2-  D-,]a,  

+[( Y + s - w ) (  Y +  S -  1 - W )  -2( V +  S- w ) ( B ~  + B-ZKm) + Dm,]av-w 

+ [Dm2 - 2( v + s - 2  W )  B,K,]u,-~, = 0 



On exact solutions of the Schrodinger equation 2537 

which may be rewritten in detail as follows: 

[ s ( s -1 ) -2sB-2 -  D-Jao=O ( 2 9 a )  

[ (s  + W ) ( S  + w - 1 )  - 2 ( s  + w ) B - ~ -  D - 2 1 ~ ~  

+[s(s-  1)K, - 2 s ( B ,  +B-,K,)+ Dml]a0=O 

[(s + 2 w ) ( s  +2w - 1 )  -2 ( s  + 2w)B-2 - D-21azw 

+[ (s  + W ) ( S  + w - 1)K, - 2 ( s  + w ) ( B ,  + B-ZK,) + DmI]a, 

+ ( D,, - 2sB,K,) a0 = 0 (29c )  
. . .  
[(s + n w ) ( s  + nw - 1) - 2(s  + n w ) K 2  - D-2]anw 

+{[s+ ( n  - l)w][s+ ( n  - l ) w  - l]Km 

-2[s+ ( n -  1)wl(Bm + B-,Km)+ D m , } a ( n - l ) w  

+ { D,, - 2[s + ( n  - 2 )  w]B,K,}a(,-,, = 0 

[(s+ n w ) ( s  + nw - 1)K, - 2 ( s  + n w ) ( B ,  + B-,K,)+ Dm,]anW 

+ { D,, - 2[ s + ( n  - 1 )  w]B,K,}a(,-,) = 0 

[Dm2-2(nw+s)B,K,]a,, =O. 

(29a-b)  and (29e - f )  are just the requirements for H having the form of a polynomial, 
and it is shown that n > O  is necessary. In order to obtain non-zero solutions, ( 2 9 a )  
and ( 2 9 f )  yield, respectively, 

s = l 3 - Z  + t * [( 8 - 2  + 4)’ + m 2 1 1 / 2  

D,, = 2( nw + s)B,K,. 

Now equations (29b-e)  may be regarded as a set of homogeneous algebraic equations 
for a,, The necessary and sufficient condition that these equations have a solution 
is that the determinant of their coefficients vanishes. This provides a secular equation 
which may be written formally in the form 

Substitution of ( 2 8 a )  into (28b)  gives 

Throughout the further analysis according to precedent, it is shown unfortunately that 
only one single eigensolution can be provided by this new method for the special 
potentials belonging to this mode only if the known parameters in the concrete 
expression of the potentials satisfy the condition with respect to (30), except for some 
special examples such as V (  r )  = Vo - 2( N + 5) V;l2r2 + V,r6  (Yang 1979). We should 
notice that the known eigensolutions for V ( x )  = x2  + Ax2( 1 + gx2)-’ can be provided 
by this new method as well, according to the mode (28 )  with & ( r )  = x. 
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Table 2. Some potentials and their respective exact eigensolutions obtained according to 
mode (22). 

Effective potential F( r )  

The concrete 
Number [ ( r )  form 

2- 1 

2-2 

2-3  ['[-I = a, 
[ = be" 

2-4 

2-5  

2-6 

['["/2[ 1 + Km["+2]-1 = a, 

x tanh(f(m + 2)a(-K,)'j2r + b )  

Qm+2)/2 = ( - ~ , ) - l / 2  

b,(b, + w ) a 2  
+ [ I +  ~ ~ b m + Z ~ ( m + 2 ) = ,  2 1 

F-2 +- 
( 1  + heg'), 

[D- ,  + d ,  - b,(2b, + w + l)]a2 F- I +- 
1 + he8' 1 + ~,bm+Z~(m+2)a' + 

E +[ - ; ($m2+ bm+a)  Fo 
+D- , -d ,  - ( m +  l)b,]K,a2 
- K,a'[-im(l + a m ) +  b,(b, + 1 ) -  d,] + F-, coth2(gr+ b )  
xtanh2[&m + 2)a(-K,)",r + b ]  
- K,a2[-am(l+$m)+D-,] 
x coth2[f( m + 2)a(- K,)'"r + b ]  

E + a2[ D-,+ d ,  - b,(2b, + w + l ) + $ w ]  idem 
+ a2[ (b ,  +$), + i w  - d,] 
xtanh2(f(m+2)ar+ b )  
+ a2[(b ,  + $ W ) ~ - ~ W ~ ]  16 

xcoth2(f(m+2)ar+ b )  

+ F, tanh2(gr+ b )  

E + K,a2{[ (  b, + 4)'- d,] Fo 
+ Fl cosech2(gr+ b )  
- F2 sech(gr+ b )  

x c o t h 2 [ f w K  a r+  b ]  
+ [ D-,+ d ,  - b,( b, + 1 )  - $ w ' ]  
x c o s e c h 2 [ $ w K  ar+ b ]  
- [ b,( b, + W )  + 3 w2/ 1 b ]  
x s e c h 2 [ $ w K  ar+ b ] }  

t '*' should be chosen correctly according to the boundary condition that R should be finite at [ = 0. 
An upper limit usually exists for n according to the boundary condition that R should be finite as [+m. 
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Eigenvalues? Remarks 

(1) Hulthen potential will emerge if I = O ,  b = 1, 
= 0 and F, = F-, = V, (cf Fliigge 1974, prob- 

(2) Wood-Saxon potential will energe if I = 0, b = 
g = l / a ,  F-,=-l and FO=F-,=O (cf 

lem 6 8 ) .  

Fliigge 1974, problem 64). 
( 3 )  The eigensolutions for a potential with Fo=O, 

F-, = - ( A  - p )  and F-, = p had been analysed 

(4) The eigensolutions listed in number 2-1 and 2-2 
should be complementary to one another. 

E ~ = ~ ~ - ~ g ~ - ~ - i + ~ - , - g [ ~ + ~ * ( g - ~ ~ - , + ~ ) ” ~ I ~ ,  by Myhrman (1980). 

S =  
g-2( F-,+ El) - [ n  i (g-2F-~+f)1’2]2 

2[n*(g-2F-2+~)1’2]+1 

1 

-( t~ +f) f (ag-2F-2)1’2 
S =  

+ A 2 *  2n(a+ g-2F-2)1/2 

g y 2 n  + 1)2 
g2[2n+ 1 ~ k 2 ( a + g - ~ F _ , ) ” * ] ~  

( 1) Poschl-Teller potential and modified Poschl- 
Teller potential will emerge when suitable para- 
meters are taken (cf Fliigge 1974, problems 38 
and 39). 

(2) The eigensolutions listed in number 2-4 and 2-5 
should be complementary to one another. 

E ,  = F, + F2 + F-, - 

E, = Fo-g2[2n+1*(a+g-2F2)1/2f(f+g-2F,)1/2]2 (1) Can also be extended to following concrete 
potentials: 
(i) Fo+ F3 coth2(gr+ b ) +  F4 sech2(gr+ b)  
(ii) F,+ F, coth2(gr+ b)  + F6 tanh2(gr+ b) 
(iii) Fo+F,cosech2(gr+ b ) + F 8  tanh*(gr+b) 
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3. Summary 

A new method has been developed for eigenvalue problems in quantum mechanics. 
By using this method, not only are almost all the known exact solutions of the 
Schrodinger equation for the respective potentials reproduced, but also more new exact 
solutions have been found. It is apparent that there are many potentials for which 
only one single eigensolution can be provided by this new method. The new method 
can be applied to the Dirac equation too, and some new results will be reported in a 
further paper. 
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